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Linear coupling of vertical and horizontal oscillations in a circular accelerator or collider is analyzed
in the presence of solenoidal and tilted-quadrupole fields. An analytical treatment of the coupled
motions based on a Hamiltonian formalism is proposed. Solutions are first given explicitly in the ab-
sence of synchrotron radiation and then extended to the case of loss of energy and photon emission by
the particles. Applications of the derived formulas to a generic accelerator are presented. Finally, per-
tinent information related to the large electron-positron collider of CERN is conveyed, in which stra-
tegies for dealing with a very large, low harmonic, tilted quadrupole are detailed and a particular scheme

for the local compensation of solenoids is discussed.

PACS number(s): 41.75.Ht, 41.85.—p, 29.27.—a

I. INTRODUCTION AND SUMMARY

In circular accelerators and colliders of particles, a
correct compensation of the betatron coupling is crucial
for the ring operation and for the performance. The
presence of too strong coupling may indeed induce optics
distortions, transfer of oscillations from one plane to the
other, tilt of the normal directions in which the betatron
motion is again decoupled, beating of the betatron
motion, and shifts of the wave numbers or tunes. All
these effects perturb the checking and the control of the
designed optics and may even confuse diagnostics such as
tune measurements when running conditions are particu-
larly sensitive to coupling effects. Also critical is the im-
plication of linear coupling on the performance of an ac-
celerator and the luminosity of a collider, because of its
impact on the transverse emittances. When the collider
conveys electrons and positrons, like the Large Electron-
Positron (LEP) storage ring at CERN, the equilibrium
emittances are critically dependent on the combined
influence of betatron coupling and synchrotron radiation
in the bending magnets. This phenomenon is all the
more important in LEP as a good luminosity requires a
flat beam, i.e., a vertical emittance many times smaller
than the horizontal one. This article therefore presents
the observations made on linear coupling during LEP
commissioning and the practical means used to control it.
It also describes the analytical tools that have been
developed to help in understanding the physics of the
mechanisms involved, analyzing the measurements done,
and designing correction schemes or strategies. Section
II gives the general basic formulas governing coupling in
absence of radiation and Sec. III shows how to use them
for diagnostic purposes. Section IV describes how cou-
pled betatron oscillations are in turn affected by photon
emission and energy loss in lepton rings, while Sec. V em-
phasizes the application to LEP of the treatment present-
ed and the strategy of compensation applied in such a
practical case.
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II. HAMILTONIAN TREATMENT
OF LINEAR COUPLING

A. Sources of coupling and form
of the perturbed Hamiltonian [1,2]

Since the perturbation theory gives the possibility to
find the exact equations of perturbed betatron motion, it
is convenient to consider linear coupling as a perturba-
tion of the transverse particle oscillations. These oscilla-
tions can be coupled by three-dimensional magnetic fields
of components B,, B,, and B, (longitudinal). In this no-
tation, x and z are the transverse coordinates, horizontal
and vertical, respectively, and 8=s /R is the angle at the
accelerator center, with s as the distance along the beam
axis and R as the average radius of the accelerator. Basi-
cally, there are two sources of coupling, i.e., skewed-
quadrupole and solenoidal field components, keeping in
mind that a finite vertical orbit in sextupoles generates a
skewed-quadrupole field. Specific examples of magnetic
elements that can generate coupling are (i) tilted-
quadrupole lenses for which one has

k=R | Px OB | 6y
2Bp | ox 3z |’
(ii) solenoidal fields for which we define
s(0)= 21;%'039 ; @)
(iii) end effects of large solenoids, described by
K(0)=(2a,—1)S , 3)

where a, characterizes the geometry of the end plates (for
horizontal slots @, =1 and for open ends a, =1); and (iv)
sextupoles with vertical orbit deviations z,
R2 B,
K(0)=—— , 4
( ) Bp ax2 Zy ( )

where the second derivative of B, characterizes the sextu-
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pole strength.

A three-dimensional field couples the equations of

motion in the following way [3]:

R? 9B, R
x+K1(9)x=—F~ajz—§;Baz , 5
+K,(0) R? 35, R B,
T T ax © Bp O

where the derivatives are taken with reference to 6 and
the functions K (6) and K,(6) are the forces exerted on
the particles by the magnetic field gradients
(K=R>G /Bp). Equations (5) can be rewritten using the
definitions (i) and (ii) as well as the property divB=0,
which links together the transverse and the longitudinal

derivatives
i+K(0)x=—(K+S)z—28z ,
. (6)
Z+K,(0)z=—(K—8)x+28x ,

all the functions depending on the variable 6, in general.
The form of the Hamiltonian H associated with Egs.
(6) can be shown to be

H=%[K1x2+K222+2sz+(px—Sz 2+(p, +Sx)?*] .
(N

The proof of this comes from writing the subsequent
canonical equations

x= gz =p,—Sz , (8a)
ﬁx=—%=—K1x —Kz—(p,+5x)S , (8b)
,_ OH _

z o, p,+Sx , (8c)
pz=—%lzi=—Kzz—Kx—(px—Sz)S . (8d)

Equations (8a) and (8c) can be solved for p, and then
differentiated with respect to 8. These two successive re-
sults can then be included in Egs. (8b) and (8d). Rear-
ranging the terms gives finally Egs. (6), proving the valid-
ity of our presupposed form (7).

Knowing H,=1(K,x2+K,z>+p2+p?) for betatron
motion, the perturbed Hamiltonian for linear coupling is
obtained by subtracting H, from H (7),

H,(y,p,)=[Kxz+Sxp, —Szp, +18%x2+z%)], 9

which is a quadratic form in the y,p, coordinates (y be-
ing used generically to represent either x or 2).

Perturbation theory imposes then obtaining an explicit
form of U=H, as a function of the constants @, and a,
of the betatron motion. Note that this form is subordi-
nated to the following properties.

(a) H, is a quadratic function (9) of the coordinates and
momentum conjugates.

(b) The solutions of the unperturbed betatron motion
are linear functions of the four constants a,, @, a,, and
@, and contain oscillatory terms with frequencies Q, and

Q,, as recalled hereafter

Q.6 _ _ —iQ.6
x=aue * t‘aue T,
. 0,0 | _ . .o _ —iQ0
py=a(u+iQ.ule * +a,(u—iQ,u)e ~* ,
0,6, _ _ —iQ,6
z=a,ve ° +ad,ve ° ,
i, 6

iQ 6 . -
p.=a,(5+iQ,v)e =’ +a,(5—iQ,7)e :

where u and v are the Floquet functions defined in Eq.
(11) and a bar above a symbol means complex conjugate.

(c) For circular accelerators and storage rings, the
functions K and S, characterizing the linear-coupling per-
turbation (9), are obviously periodic in € with period 27.

Introducing the general solutions of the unperturbed
motion into the expression (9) is a standard calculation
that provides [1,2]

2

_ 2)  jmk 1=m

U= 3 hjimaia aa,;
ik lm=0

Xexp{i[(j—k)Q, +(I—m)Q,18} (10)

with the rules coming from the above properties that the
sum j+k+/+m is equal to 2 and any index takes only
one of the values O, 1, or 2. (Note that @ is the complex
conjugate of a.) The coefficients A [2] obviously depend
on the Floquet functions u and v (general name w) and on
the coupling forces K (1) and S (2). They are given ex-
plicitly hereafter [2]

2) — 2,2 2) — 2-2 2) — Q2,55
hEo =182 hi3h=1S%?% hi%h=S%u,
2) — 2.2 2) — 252 2) —Q2,5
h(oo)zo—%s Ve, h{mz—%S U*, hgo’“—S o,

h' 2o =Kuv+S[u(®+iQ,v)—v(a+iQ.u)],
(1
h3 =Kuv+S[u(v—iQ,v)—v(t+iQ,u)],
h3h =c.c. of K3y, hZo=c.c. of K3}, ,
172
B,(6) )
2R expli(p,—Q,0)],

w=

where c.c. stands for complex conjugate and w is equal to
u for the coordinate x and to v for z. The quantities By
and p, are, respectively, the betatron amplitude and the
phase advance in either transverse coordinate x or z.

The property (c) mentioned above makes it possible
and judicious to develop the coefficients # [2] in Fourier’s
series,

+ .
i (0= 3 hjfimge®®, (12)
q =—o00
with
1 2 i
hifimg =5 [ i (0)e "14%d0 .
Putting Eq. (12) into (10) adds another sum over the har-

monics ¢ and modifies slightly the phase term or argu-

ment A4.,, of the exponential function

Aexpzi[(j_k)Qx+(l—m)Qy+q]0- (13)
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Let us introduce now our first approximation: we as-
sume, with other authors [4,5], that the low-frequency
part of the Hamiltonian (10) gives the important varia-
tions of the constants a;, @;, a,, and @,. The low-
frequency part corresponds to the special choices of the
indices that are canceling the argument (13). The corre-
sponding conditions are

j=k, I=m, ¢=0,
with j and [ taking either the value O or 1, and

(j—Kk)Q, +(I—m)Q,+q=0

U=h3%h0a,3; +h3 08,3, (frequency shift)+h(1%,)10_pala2e

i(Q,—Q,—plo
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as a whole. Redefining n,=j—k, n,=l—m, and
p=—gq, this is equivalent to the well-known resonance

condition

n1Qy+n,Q0,—p

where n; can take the values O, 1, or 2 and n, the values
0, =1, or 2 according to selection rules.

With this approximation to the low-frequency part, the
Hamiltonian U can be explicitly written [2]

i(Q_+Q, —p)o
O+, p +c.c.

5 i(2Q,—p)6

(sum resonance)

+h(1%2)1,p a,a,e +c.c. (difference resonance)+h 53, _paie +c.c. (horizontal resonance)
i(2Q,—p)6 .
+hGho—pase %:7P% 4 ¢.c. (vertical resonance) , (14)

where c.c. again stands for complex conjugate. Equations (14) indicate that coupling perturbation implies frequency (or
tune) shifts with amplitude, sum and difference coupling resonances, but also one-dimensional quadrupole resonances.
However, only sum and difference resonance driving terms are to first order in the perturbation functions (1)-(4), the

others being to second order. This can be seen in the expressions of these driving terms, deduced from Eqgs. (11)-(13),

(2) — 2
B0 = SRf 5%8,d6 ,

00110

1 i[2u, —(2Q, —p)6]
higbo = 52 » T Pl
W0_p 8TR Bye
hE = " K+RS |-~ ——% | —iRS
ey e I, VP, 5 h

Xexp{i[(u, Fu,)—

where the coordinate y (x or z) and the sign in the expres-
sion (15) have to be chosen according to the indices of
h® (x and top sign with the upper indices and vice ver-
sa).

For the first-order (in the perturbation function) reso-
nances, coupling coefficients proportional to the driving
terms can be written by definition [2,6],

C+=2h(l%)>10~p’ C_:2h(17(‘)%)l—p (16)

with, in addition,

A:F=Qx:FQz—p’ }\'x=h(1212)00’ )\’z=h§)%))110' (17)

Effects of coupling are then frequency shifts and excita-
tion of several resonances. Equations of motion of the
type (8) can be written using @,,d, for the positions and
ia,,ia, for momenta. Explicit solutions have been calcu-
lated [2] for each resonance separately, including the
second-order (in the perturbation function) tune shifts
(characterized by A, and A,).

(15a)

(15b)

+ 1
Bx Bz
(@, FQ,—p)o]}do

(15¢)

B. Solution of coupled motion near a single resonance [2]

It is possible to find the explicit solutions for every res-
onance excited by linear-coupling sources, i.e., O, —Q,,
Q,.+0,, 20,, and 2Q,, which are all of second order in
the wave numbers (this order being defined by the
absolute-value sum of n; and n,, the coefficients of the
tunes). Taking separately each resonance and including
the terms A, and A, of Egs. (17), let us first deal with the
two more important sum and difference resonances,
which are to first order in the perturbation K () and
S(0).

Introducing the expression (14) of U for one single res-
onance at the time in the equations of motion and using
the definitions (16) and (17), the explicit equations of
motion can be written in either case of a dominant sum
resonance or difference resonance

dal .

a0 =il.a,+if,e” (18a)
day +i0A

T =iA,a,+ig,e , (18b)

where one has introduced
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(1) faz%é _02, ga:%C_al
for the difference resonance and
(11) fa=%é +62’ ga:%é +El

for the sum resonance. The sign + or — of the exponent
in Eq. (18b) concerns case (i) or (ii) and A is equal to A~
or A™, respectively.

Equations (18) are the manifestation of our second ap-
proximation: we assume that the working point {Q,,Q,}
is close enough to one resonance due to coupling and re-
mote from the others, so that one can keep only the cor-
responding term of U. To be able to solve explicitly the
equations of motion, this approximation is required, but
to compensate coupling effects both resonance driving
terms (16) can simultaneously be canceled.

Since A, and A, are real quantities, we can make the
following change in the variables in order to solve (18):
ir 6 ir,0 (19)

Putting (19), which is the solution of (18) for C™ =0 or
C*=0, in (18) gives the equations for b, and b,

dby . db, _
20 =ifpe” 7%, Jo 8

where f, and g, are defined as f, and g, in items (i) and
(ii) above, after replacing a,,a, by b,,b, and the ap-
propriate sign is chosen according to the resonance con-
sidered. The coefficient D has also a definition that de-
pends on the resonance and the whole thing can be sum-
marized as follows: for (i) the difference resonance

be%E _b2, gbz%cfbl, D=A—+A’x_}\‘z

a,=bje ¥, a,=b,e

pe D0 (20)

and for (ii) the sum resonance
f=3C7b,, g,=1C7*h,, D=AT+A,+2, .

The set of equations (20) can be relieved of the exponen-
tial functions by introducing a new variable marked b,
and defined by

by =bye *PY, 1)
as shown in the results

db,

do b~
with f, - =1C “b5 or LC*b7,

db, . _ -

70 =1iC"b,—iDb; (22)

for the difference resonance, and

db; _

T;~=—%:‘C+b, —iDby

for the sum resonance. Combining the equation for b,
with either the first (difference resonance) or the second
(sum resonance) equation for b5, it is possible to write a
second-order equation for either the difference or the sum
resonance, respectively,

6107
d*%; _db; c-C-
2 4ip22 €€ 4o,
de’ 46 ¢ (23)
d’; . dby c*T*t __
o TiD— == b =0

The solutions of these two equations solve the perturba-
tion problem defined in Sec. Il A and are very similar,
since the equations are themselves similar. One obtains

_| B,
C —_—

1 g, By iwe
— e T +——¢ !
2 CL)Z CDl

b 1 =
(24)

—iw; —iw,0

— 6
by or b, =Bje +B,e
with the definition of the w’s, for the difference and the
sum resonance, respectively,

wy,=i[—DxVD2+|C™|?],

(25)
D*—[CT|],

w,=5[—D%x

where the indices 1,2 are associated with the double sign
in front of the square root and D is defined in the para-
graph below Eq. (20). At times, for convenience, one in-
troduces by definition ¥ =V D?+|C T |2. The quantities
B, and B, are now the actual complex constants of the
perturbed motion.

Moving backwards through Egs. (24), (21), and (19),
one can write the variation with 6 of the constants a; and
a, of the unperturbed motion, in the case of linear beta-
tron coupling. Near a single difference resonance one has

1 - _ Bl iw_,0 BZ io_,0
a;==C~ |—e T 4+—¢ |,
2 W, o
) . (26)
—iw_,0 —iw, 6
azw—“Ble 22 B2e 21 N

where the wave numbers ® depend now not only on the
sign in (25) but also on the plane considered, by virtue of
(19) that implies A, #A,, A, 0, and A,70,

wx1,2=%[—(A__A’x _}\'z)

+V (A~ +A, —A,)2+|C7|?],

27
(021,2:%[—'(A_+)\'x+)\.z) )

FV (A~ +A, =12 +[C .

These equations indicate that in this case the motion is
always stable with amplitude beating and exchange be-
tween the two transverse directions. Similarly, near a
single sum resonance one can write

a1=i5+ B m)"29+&em’”6 ,
2 W, @
. (28)
a2_§1 1w110+§2 iw,,0

and the wave numbers are slightly different from (27),
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wxl,2=_;'[_(A+_)"x +;"z)

+V (AT +A, +4,)2—|CH|?],

+ (29)
0,1 2= [ — (AT +A,+A,)

+V (AT +A, +A, 2 —|CH|?] .

These last expressions indicate that the motion near a
sum resonance can be stable or unstable, depending on
the amplitude of |C*|. It is stable if w, and w, are real.
In other words, this means that if [CT|<|AT+A, +A4,],
the motion is stable, and if |C1|>[AY+A, +A,], the
motion is unstable. When the motion is unstable, ampli-
tudes may increase to infinity in both transverse direc-
tions.

The forms of Egs. (26)—-(29) show that the perturbed
betatron motion is made of two modes associated with
two different frequencies », and w,. Results (27) and (29)
show moreover that the inclusion of the S? terms from
the Hamiltonian, i.e., A, and A,, only slightly modifies
the frequencies of the two modes and that this effect is
different from the horizontal and the vertical mode. In
the special case where the terms A, and A, are neglected,
Egs. (27) and (29) simplify to

0= —ATEVATH[CTP]=L—ATEtnT], (30a)

0, = —AYEVATI—[CF]P]=1[—AT+9*]  (30b)
and become independent of the plane considered.

Considering now only a difference resonance and
neglecting the tune shifts with amplitude A, and A, ac-
cording to Eq. (30a), the complete solution can be de-
duced from the general form of the solutions of the un-
perturbed motion (see Ref. [2]). Dealing only with the
amplitudes and ignoring for simplicity the conjugate mo-
menta, the solution is

172
1 =_ Bl iw20 B2 iwle Ex Im
= — —_— _ —_ X+
x(6) 2C mze +a>1 R e c.c. ,
B 172 31
z(9)=(Ble_'wle+B2e_m29) 2; e +c.c.

With these equations, we went as far as possible in deal-
ing with linear coupling by using perturbation theory
with the Hamiltonian formalism.

Before closing this section, let us make two more re-
marks. The first one concerns the effects related to A,
and A,. Considering as an example the situation where
C ™ is vanishing after compensation, the solution of the
motion must now include the constants (19) and therefore
Eq. (31) is replaced by

B 12
x(8)=b, i M th® 4 o R
8 172 (32)
z i(p,+A_6)
= P4 e
z(6)=b, R e c.c

The effects referred to are different tune shifts in the two
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transverse directions, the amplitudes of which are given
by Eq. (15a), hence proportional to the square of S(8)
and to betatron amplitude. Therefore, one has to keep in
mind that it might be necessary to adjust the tunes after
compensation of solenoidal fields with tilted quadrupoles.

The second remark concerns the one-dimensional reso-
nances 2Q, —p, which are considered to be less important
because they are to second order in the perturbation
S(0). In fact, large stop bands are opened near each in-
teger or half integer by the strong quadrupoles of the
nominal lattice, responsible for K; ,. The effect of S(8)
in this respect is just to slightly modify the forbidden
bandwidths around these particular values, i.e., the quad-
rupole driving terms, according to

k=—— [k, ,+52B,¢' ™

_ —(20,—p)0]
87R Yo

do . (33)

Usually S? is small with respect to the nominal K 1,2 and
therefore negligible. But a judicious compensation of the
tune shifts (32) mentioned might also be able to cancel
the effects on « if the corresponding change AK, , bal-
ances the S? term in (33).

III. MEASURING THE DIFFERENCE
COUPLING COEFFICIENT

The solutions of the linearly coupled motions (31) give
a clue to possible methods for measuring the coupling
coefficient C~ of the difference resonance. Using the
form of the coupled motions following a dipole kick in
one transverse direction, one can show that the subse-
quent coherent oscillations can be analyzed for measuring
the real and the imaginary part of this complex
coefficient. More generally, considering the two frequen-
cy modes (30) that characterize the motions (31) and
mapping out their separation as a function of the tunes
can be used for measuring the module |C ~|. These two
methods are described below.

A. Coupling measurement from coherent oscillations [ 7-9]

Let us summarize the analysis of the transverse oscilla-
tions after kicking the beam horizontally, the details of
which can be found in Ref. [7]. The equations of motion
(31) are functions of two complex constants (four real
constants) that can be defined from the initial conditions
of the motion. According to our assumption, these con-
ditions are

Xo=20=29=0, %,#0 . (34)

Now it is useful to rewrite (31) by using the sinusoidal
functions and bringing into evidence the two modes
characterized by the frequencies w; and w,,
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4R> 7' VB,
X = _Cl -
Bx Bz, N
X[dcos(pu, +®,0)—e;sin(u, +w,0)
—d,cos(p, +w,0)+e,sin(u, +w,0)], 35)
_(4r2 __,17'VEB
Bx Bz, n

X[f1cos(p, —@,0)—g sin(p, —,0)
—fycos(p, —w,0)+g,sin(u, —w0,0)],

where f3,,B,0 are the betatron amplitudes at the kicker
position, C,,C, the real and imaginary parts of C ™, d, e,
f, and g new constants of motion, and 7 is equal to 77,
defined after Eq. (25) or in (30). After some cumbersome
algebra [7], it is possible to write the constants as func-
tions of the initial conditions (34),

C\C,
di,=—==3%g,
‘/on
R|C™|? .| %o
81’2:_ _—’—'—'_Cl Ie—
a)l,2ﬁzo ’\/BXO
36
b, RC (36)
1,2 0>
Bzo‘/B"o
R Xo
812=72C | 7——w, — .
Bz, \/ﬂxo

One observes from (35) that the single-particle motion
contains fast and slow oscillations associated with the
phase u, and w; ,0, respectively. It is therefore possible,
using the combination law of sinusoidal functions, to fac-
torize the signal into a slowly oscillating envelope and a
fast oscillating component [7]. The result is

x(9)=——1}-f—Excos ,ux—%e-q&x ,
3 (37
z(9)=~n—z-Ezcos ,uz+%9——¢z ,

where both the phases ¢,,¢, and the envelopes E, ,E, are
functions of the coefficients d, e, f, and g and A stands for
the distance (17) from the difference resonance “mea-
sured.” In the particular case of a horizontal kick, with
the particular coefficients (36), the envelopes become,
after neglecting the terms containing |C|8,,/R ( <<1),

2__ 0
E;= I'E

n2—|C_|2sin2—72]-9 x?, ,

(38)
on ﬂ‘ 2
E2=F|C_]2sin2 5 0% -

z

It comes out from Eq. (38) that the fraction F of the en-
ergy (taken here as the square of the envelope amplitudes)
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interchanged between the two signals, the ratio G of the
minimum to the maximum of the horizontal envelope
and the period T of the envelope oscillations (involving
the revolution frequency f.,) are

polCTE__lcp
n*  A+|CT]P
A 1A
1 VA+[CT]?
1

T= ,
N rev

in agreement with Refs. [7] and [8]. It is interesting to
note that the maxima and minima of the envelopes (38)
appear for n6=n, n being an integer, and that these en-
velopes are independent of the phase of C™ in the com-
plex plane, if the assumption R /B,,>>|C 7| is verified.
Consequently, the knowledge of C, and C, requires com-
plementary measurements, such as the response to an in-
clined kick, for instance,

xO:ZOZO,
%070, 20£0, Xo/20=4/Br/Br, . (@0)

More precisely, the coherent oscillations following a
horizontal kick have the characteristics shown in Fig. 1
[9], according to Egs. (38). In the plane parallel to the
kick, the initial amplitude of the envelope is finite (x,70)
while it is zero in the orthogonal plane. With the time,
the envelopes beat with the period T and the horizontal
one has minima when the vertical one has maxima. This
illustrates the interchange of energy already mentioned,
in the presence of second-order (in tune) difference reso-
nance. Easily measured are the period 7T and the ratio G
of the minimum to the maximum of the horizontal ampli-
tude. Solving Egs. (39), such measurements give the dis-
tance from, and the driving term of, the resonance

|
lAmpli!ude T

_—

oI
KUl

Plane perpendicular
to kick

A
Vv

Amplitude

Amin

A e
e PRCY |V

to kick
FIG. 1. Coherent oscillations following a horizontal kick (ar-
bitrary units).




6110

Amplitude

Time

FIG. 2. Vertical (above) and horizontal (below) coherent os-
cillations measured in the Intersecting Storage Rings (CERN)
after a horizontal kick. The beating period is 0.5 ms in this
case.

G 1 —_—
, V1-G?, 41)
Tfrev Tfrev

[where f ., is the revolution frequency].

As an illustration of a practical use of this method, Fig.
2 shows one of the first signals obtained in the now dis-
mantled Intersecting Storage Rings (ISR, at CERN) from
the filter output of the device that was used to measure
the tunes (kicker and large band pickup). It is clear from
this picture that the coherency of these signals (proton
beam) was more than sufficient to measure T and G with
very good accuracy. This question of coherency has to be
considered when designing a coupling meter, in particu-
lar for an electron beam, and the kicker has to be strong
enough to generate oscillations of amplitude that are
large with respect to the pickup resolution. The revolu-
tion frequency does not limit the precision of this method
since it is usually known to a high accuracy. In the case
of Fig. 2, the measured value was |C~|=1.2
X 1072 and corresponded to the residual coupling of the
ring plus the contribution of one experimental solenoid.

In the ISR, the carrier frequency was 30—300 kHz and
modulation frequency 0.5-10 kHz. The pickup signal
was passing through a rectifier, followed by a sharp-edge,
low-pass filter, and differentiated. The zero crossings
were used for measuring T and triggering units that
stored maxima and minima of the signal. The precision
was 3% for the maximum and the minimum values and
+19% for T, giving about 4% on |C ~| and |A]|.

laf=

Ic™l=

B. Coupling measurements from mode frequencies

Solving the equations of motion for a difference reso-
nance revealed the existence of two modes at frequencies
@; and o, (35). The positions x and z are given by a mix-
ture of these modes, but it is possible to rotate the initial
axes until the modes are decoupled. These inclined
modes are termed normal modes. According to Eq.
(30a), which gives the frequencies of these modes when
A, and A, are neglected, their wave numbers are separat-
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FIG. 3. Coupled tunes as functions of the distance from the
difference resonance (dimensionless quantities).

ed by /2, i.e.,

Qum1 =05 +5VATFICT,
(42)

Qn,m,ZZQz+%_%‘/A2+|C_|2 ’

where only the fractional parts of the tunes are included.
When |C ~|=0, the normal mode tunes are equal to the
unperturbed betatron tunes Q, and Q,. When |C ~|#0,
the effects on the normal mode tunes depend on A
(=Q,—Q,). If A is large with respect to |C ~|, there is
little change of the tunes, but when A is small the impact
of coupling increases, to reach a maximum at A=0 (with
the tune split equal to |C ~|). This frequency split of the
normal modes is associated with the above mentioned ro-
tation of the normal axes and sometime an elliptical po-
larization if C,5<O0.

These effects can be observed experimentally. Increas-
ing Q, and reducing Q, in the vicinity of the coupling
resonance while also measuring the tunes with horizontal
and vertical kickers and pickups will result in curves
similar to those of Fig. 3. The pickups react indeed at
the frequencies of the normal modes 1 and 2 and one can
distinguish three typical situations: (a) |C™| <A, where
the modes are nearly vertical and horizontal and the
pickup measurements are reliable; (b) |C ™ |=A, where
difficulties in measuring the tunes begin to appear and
tune readings start to jump back and forth from mode 1
to mode 2 [two lines are visible on each (horizontal or
vertical) pickup]; and (¢) |C 7| > A, where tune readings
are spanning the stop band visible in Fig. 3 (at A=O0, the
pickups respond equally well to both modes, which are
now at 45°). This shows that the difference in normal
mode frequencies is exactly equal to |C ~| when A=0 and
that measuring the tunes while scanning the resonance vi-
cinity provides another way of measuring |C ~|.
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IV. AMPLITUDE VARIATION
DUE TO RADIATION AND ACCELERATION

A. General expression of the amplitude variation

Considering the expression (31) for a difference reso-
nance and including now the conjugate momenta
Py =X +Sz and p, =z — Sx, the entire solution for the vec-
tor Y=(x,p,,z,p,) can be written as follows in presence
of linear coupling:

4
Yj=k§1wjk(e)Ak, j=1,...,4, (43)
where j is numbering the four components of Y,

A,=B,, A,=B,, A;=B,, A4,~B,,

and the functions w are

172 ;
é“ Bx / z(px+w%9)
W= = | == e
3 20, |2R ’
1
6 _ R 172 i(p, +,6)
— . 1
Wy =~ (l—ax )e N
23 20, | 2B,
1
B 172 ip, —a,6)
z
wy = || e 2, (44)
33
172 i, —,6)
W = _R__ (i—a e 2
41 2ﬁ z ’
43 z

Wi =W;;, Wjp=W;3 .
The two different subscripts of the w’s are associated with
the two indices of w and the form of the functions (44)
implies that the following relations hold:
i2mh ik

with
A.j2=—'}\,j1, )\,14=_}\4]3 .

These solutions are strictly valid in the absence of radia-
tion, but coupled betatron oscillations of leptons are in
turn enhanced by photon emission and damped by the
longitudinal acceleration as well as by the average energy
loss in the presence of the focusing component of the
magnetic field.

Starting from the constants A, of the coupled motion,
we now look for their variations due to these effects [10].
Assuming that these constants change slowly with respect
to the quantum fluctuations and the period of the coupled
betatron oscillations, they will reach an equilibrium be-
tween excitation and damping after a few damping times.
It is precisely these equilibrium values of A4, that we
want to derive in the following subsections.

It follows from Eq. (44) that the quantity F defined
below is an invariant of the motion

F(wjj,wp ) =w W — Wy Wi T Wy Way —Wyws, - (46)

As a consequence of the invariance of F and of the prop-
erties (45), we can write

Flw;(0),w; (0)]=F[w;(0+27),w; (0+21)]
=expli2m(A;+A;)]
XF[w;(6),w;(0)] 47)

and the equality between the first and the last term of Eq.
(47) (which can only be satisfied if the exponential is equal
to 1) induces the orthonormality
Fww;)=1 ifw,=wy, ,
% . J J 48)
F(Wj],wjk )=0 lf wjﬁﬁwjk .
This property of orthonormality can now be used to solve
Eq. (43) for the A4;’s. Let us write indeed

4
F(Yjwi )= A F(wy,wy ) =4, F(@p,wy) , (49)
=1

making use of Egs. (43) and (48). Then we derive from
the equality (49)

_ F(Y;,my)

= . (50)
F(wjk;wjk)

Ay

Since we want to look for the variations of the A4;’s due
to changes in the canonical variables (vector Y), Eq. (50)
is the key equation. In general, any variation of | 4, | due
to trajectory changes 8Y; can be expressed as

8|Ak!2=zk8Ak+Ak82k+I8Aklz

1

——— 1A, F(8Y;,i5,;)— A, F(8Y,,w; )
F(wjk,wjk) k ik , 7k

S S
F(wjk,wjk)

xF(an,w,k>} : (51)

B. Application to photon emission and acceleration

Considering the photon emission, it is well known [11]
that the equilibrium orbit and the betatron variables are
changed by a quantity that is proportional to the photon
energy € and to the dispersion D, whose components are
(D,,D,,D,,D,):

=_&_
oY= Eq D. (52)

In the presence of longitudinal acceleration 8E in a cavi-
ty, only the transverse momenta are changed while the
transverse coordinates remain constant:

aY=(8x,5px,az,sp,)=(o,—px,o,~—p,)§E£, (53)
(4]

E, being the nominal energy.
Let us first deal with the orbit change due to photon
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emission. Since 8Y is proportional to £ [Eq. (52)] and
since 8Yj appears linearly as well as quadratically in Eq.
(51), it is necessary to evaluate the average (&) and the
mean square {e?) of the quantum emission, over a time
interval Az, and to multiply both by the mean emission
rate N. We will now consider successively these two
terms.

(a) If P, stands for the rate of loss of energy by radia-
tion, we have

NAt(e)=-P,Al, (54)
where Al is the path length interval and
P,=2rcyEL, Al=as |1+ 242 (55)
3 P Px Pz

The quantity 1/p? in P, is proportional to the square of
the field B2. Taking mto account the possible presence of
field gradients, we must develop B?in a series for x and z.
Keeping only first-order terms,

BZ

B2 =1+G,x+G,z , (56)
with

G _ 2 B dB, _3 9B,

* B | ox * oz |’

G _2 B 9B, 0B,

B3| T o Z 9z

Regrouping all the first-order terms in x and z that ap-
pear in the product P, Al, we obtain

1P Al=

7,OAs(1+C x+C,z), (57
with C,=1/p, +Gx and C,=1/p,+G,. On the right-
hand side, P, is calculated on the central trajectory
x =z =0 with the nominal field B,.

Putting all these results together and replacing x and z
by their development in eigenfunctions [Eq. (43)], the ex-

P, At
EO

P At |4}
E, F(wjk,wjk)

(8] 4>y =~ | 42—

Q. At
: (1D wy
 E3Fwy,my)
The equality AF(8Y,5)—
simplicity.
damping, and quantum excitation.

2i {Im[(C, @, +C, T (D wyy

—D,w; +D,wyy
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pression we are looking for is

NAt(e)=AtP, |1+ 2 A (Cowy, +Cway) (58)
=1

(b) If Q, stands for the mean value of the product
N{€?), we have simply

NAt(e?)=ArQ, (59)
with

0.= rohe OB (60)
P’

55
24V3

In the expression (51) for the amplitude variation,
we still need to evaluate the function F(8Y;,wy)
=£F(Dj/E0,wjk) and the similar one F(SYj,wjk ). This
is simple if we make use of the definition (46):

F(Dj/Eo,w!k)= (waZk —wa1k+DZw4k—Dzw3k) .

1
EO
61)

Let us now turn to the question of longitudinal ac-
celeration §E [Eq. (53)]. For the same reasons previously
evoked, linear and quadratic terms in 8E will be present
in Eq. (51). If the quadratic term 8E 2 becomes negligible
towards the limit Az —0, the linear term averages to (us-
ing eigenfunctions again)

4
op,—— 0B, __OE) < (0)14,. (62
E, Ey =0 %

Introducing Eq. (62) in the linear terms of Eq. (51) and
assuming logically that the average (8E) must exactly
compensate for the radiation loss gives

8l A, 2=

accel — Eo | A]%' . (63)

Putting together Eqgs. (58), (59), and (61) into Eq. (51)
for the photon emission effect and adding the contribu-
tion (63) of the acceleration, we can derive the following
expression for the amplitude variation:

—D,wy; +D,wy —D,wy)])

—DZI,U3kIZ> . (64)

AF(SY,w )=—2i Im[ AF(8Y,w)] has been applied and the subscript O of P,, abandoned for
The three terms of (64) give, respectively, the amplitude variation associated with acceleration, radiation

C. Equilibrium amplitudes with coupling and radiation

The finite amplitude variations with radiation for a finite time interval Az are written explicitly in Eq. (64). On the
limit of infinitesimal interval (At —dt), Eq. (64) becomes, with the usual notation [11],

d| 4,

A H R

(65)
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where a; are the damping coefficients

a=<Py >J (66)
k\2E, [7F”

which are proportional to the damping partition numbers J;,

Im[(C, @ +C, W3 (D,wy, —Dywyy +D,wy —D,way )] > 7

Jk:1+<
Im(wlszk +W3kw4k)

and where Q, are the transverse beam amplitude tions (44) as well as the equalities between complex conju-

coefficients gates, we can rewrite Eq. (70a) in the following manner:
. - ) ) 5
Qk=<l Qs>< | D, wyx =D wyg +D,wyy —D,wy | ) . Ey—_—%:B—HA%IIw“P-F|A§Hw13|2) i (70b)
4 E3 Im%(w 4 Dy + W Wy ) y y 3 3

(68) the two subscripts of the w’s being associated with the
horizontal and the vertical coordinates, respectively.

These  relations use the identity F(wy W) In order to simplify the following calculations, let us
=2i Im(w Wy T W3 Wy ). now assume that the accelerator or the storage ring of in-
Within the assumption made in Sec. IV A, a stationary  terest is large and has separated functions. This means
state will occur after a few damping times and it corre-  that the radius of curvature p is large and there is no gra-
sponds to the condition d| 4, |?/dt =0. Hence the equi- dient in the dipoles (C, =C,=0). Consequently, (D /p)
librium amplitudes are [Eq. (65)] is small with respect to 1 and Eq. (66) becomes simply
2] Qk — < P?’ >
|Ag1= 20, (69) %=(3z 71

and this is the important result to be used in Eq. (43). Be-  with J; =1. Hence, putting together Eqgs. (68)—-(71) and
tatron coupling is present through the eigenfunctions  introducing the explicit forms (44) of the eigenfunctions
[Eq. (44)], the fact that both vertical and horizontal make it possible to write the emittances as

dispersions have an influence, and the need of four

: ve ; . Q 403|C |7
coefficients (k=1-4) in order to describe the whole Ex=< ¢ > (H,)
motion. REyP, | | (40}+|C~|*)?
—_ : . : - 47|C |2
D. Equilibrium emittances with coupling and radiation — — (H 3 ) ,
(40}+|C7[*)?
Betatron oscillations are characterized by the trans- 4 (72)
. . . . (OR 16w,
verse invariants of the motion, which define the common- E, :< > (H,)
ly used emittances E,. If by definition E, represents the RE\P, [ | (403+|C™|?)?
invariant mean-square amplitudes of the transverse oscil- 160t
lations, we must have + —1_———( Hy) |,
(40i+|C7[2)?
2
Ey = @) (70a) where Pv and Q. are given by Eqgs. (55) and (60), respec-

By tively. It remains to define the functions H; and Hj,
which are simply the numerator of the second bracket in
Starting from the solution (43) and using the eigenfunc-  Eq. (68) of O, and Qj5:

_ICTP R |52 1 55 2l R |2y 1 o ,
H; PO Di+ Rz(BxDx +Ra,D,) |+ 2. D}+ RZ(BZDZ+RazDz)
1
'—R C — VBXBZ -— . o
+ Re[C “(a,—ila,+i)exp(i¢)]D,D,+———Re[C “expli¢)]D,D,
20VBB, plig)] 20, [C ~explig)]
1
1 (8, ' LB 12
20, | B. ‘ Re[C (ax—l)exp(l¢)]DxDz+Z); le Re[C ~(a,—i)expli¢)]D,D, . (73)
! 1
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The subscripts of H are associated with the two indices of
o [see Eq. (31)] and the phase ¢ is written for

d=p,—u,—0A .

The two first terms of (73) are directly proportional to the
dispersion invariants (named I, and I,), which appear
naturally in E, and E,, respectively [11], in the absence
of coupling. The other terms are obviously coupled
terms for the dispersion.

Turning back to the expressions of the equilibrium em-
ittances (72) and (73), which appear to be fairly compli-
cated, let us look at two borderline cases.

(a) For vanishing linear coupling (C~ —0), the four
terms in the square brackets of Eq. (72) have finite limits.
Two of them are equal to zero, while the two remaining
ones become equivalent to

(74)

4a3|C ™| R
GagticpE T2
L6t (75)
@ __8_
(4m§+lc—|2)2<H3>_ 5 (1,) .

In this case, the transverse equilibrium emittances and
their ratio g =E, /E, are simply given by

=<2EQ(}.,>””’ ¢= g; .

As expected, the vertical emittance is nul, if the vertical
dispersion vanishes in addition to C ~.

(b) For vanishing vertical dispersion (but C ~0), the
functions (73) can be written as

H1=—|C_|2£—<

2
3 Wy 8
1

E

Yy

(76)

I.). 77

Introducing Eq. (77) into Eq. (72) gives, for the emit-
tances and their ratio g,

By
Ez,O

and

08

0.6
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g o Qe Llc~|/ay?
x <2E0P,,>(|C_|/A)2+l’
I, \ L]C7|/A)?
Ez=< Qt: ) 2 - 5 , (78)
2EoP, [ (|IC™|/A)*+1
o= (Ic~1/A)?
(lc™l/ay2+2 -

The corresponding curves for E, and g are plotted as
functions of the ratio |C | /2A in Fig. 4. Both Eq. (78)
and Fig. 4 show that in the limit |C ~|>>A (sometimes
called full coupling) the transverse emittances are equal
and take half the value of the horizontal emittance at
C ™~ =0. In general, coupling and vertical dispersion are
not vanishing, so that not only I, and I, are contributing,
but also the products D, D,, D,D,, D, D,, and D,D,, in
agreement with expression (73).

V. APPLICATION TO LEP BETATRON COUPLING

In a circular collider like the LEP [12] with experi-
ments installed around each interaction point, it is impor-
tant to compensate for the linear coupling due to experi-
mental solenoids [13] on the one side and the unavoidable
sources of residual imperfections all around the ring on
the other side. Coupling would indeed not only generate
beating of the S function and tilting of the beam at cross-
ing points, but also modify the nominal equilibrium emit-
tances according to the mechanism described above,
which in turn would influence the performance. More-
over, performance optimization requires an adjustment of
the emittance ratio g =E,/E,, which can be achieved
through variations of the coupling coefficient C~ (Sec.
IV D) using a few specific tilted quadrupoles.

0.4

0.2

g
FIG. 4. Horizontal emittance
and emittance ratio as function
N of |C~|/2A, with vanishing
Ezo vertical dispersion. All quanti-

ties are dimensionless.

0.01
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A. Emittance control with linear coupling

The performance of the LEP at a given beam current
(limited by other mechanisms) is optimum when the
beam-beam forces are such that the horizontal and the
vertical beam-beam tune shifts are equal (and below a
threshold of the order of 0.03 at collision). This implies
the following relations between the emittances, the B*
functions, and beam sizes o * at the crossing point:

E, Bi o}
=—=-Z (79)
z

Ez ﬁ: g

The B* ratio associated with the design of the experi-
mental insertions (nominal value of 25 in the LEP) im-
plies the use of flat beams and small values of g (4%).
The expressions for the emittances in the presence of be-
tatron coupling and radiation (Sec. IV D) allow an es-
timation of the range in which g can be controlled. The
assumptions made in Sec. IV are fully valid for the LEP,
which has tune values near a difference resonance (initial
nominal tunes where Q,=70.4 and Q,=78.3, with a
difference of 8 in the integers selected for beam-beam
effect optimization), a very large radius of curvature, and
a lattice with separated functions (i.e., C,=C,=0). If
the horizontal dispersion invariant {(I,) has been es-
timated [13] to be equal to 1.75 102 m, the vertical one
(I,) is of the order of 1.8 X 10~ * m for a residual disper-
sion of approximately 10 cm (as expected in the best con-
ditions), 11.2X 10~ * m for D, of 25 cm, and 28.8 X 10™*
m for D, of 40 cm.

In these conditions, the theory developed above allows
one to estimate the minimum emittance ratio [13], which
can be reached for different amplitudes of the vertical
dispersion. The best one can do consists of compensating
exactly the linear coupling such as C~ =0. Equations
(76) then apply directly and give minimum emittance ra-
tios g min of 1%, 6.25%, and 16%, for vertical dispersions
of 10, 25, and 40 cm, respectively. The nominal condi-
tions (g =4%) imply that D, must remain below approxi-
mately 20 cm. To get C~ =0 in LEP, there exist four
tilted-quadrupole schemes located in sections where
D, =0, designed for the compensation of the fields of the
experimental solenoids present at the collision points and
for the control of the residual machine coupling [14].

In the other extreme case, the coupling coefficient can
be so large that the contribution of the vertical dispersion
to the emittance becomes negligible and Eqs. (78) apply.
Using these equations and/or the curves of Fig. 4, one
finds out that, for a distance to the difference resonance
A=Q,—Q,+8 of 0.1, values of 0.1, 0.2, 0.3, and 0.5 for
C ™ correspond to emittance ratios g of 33%, 66%, 82%,
and 92% (all well above g, associated with D, only).
The capacity of the LEP tilted-quadrupole schemes
makes it possible to provide such high values of C 7, al-
lowing either for full coupling if necessary and for com-
pensation of contingently large C ~ if required.

Looking at the numbers, the flat-beam configuration
required for the LEP performance implies reducing the
value of C~ below approximately 0.01 while keeping the
residual amplitude of the vertical dispersion lower than
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~10 cm. If the nominal value of g =4% is exceeded at
constant beam current and insertion optics, the loss of
luminosity will rise with approximately \/E. Indepen-
dently, a high value of C~ (>0.1 say) prevents accurate-
ly running of the ring and its injection system, since the
optics is perturbed (in particular, for tunes close to a
difference resonance) and the diagnostics are confused.

Among the possible sources of coupling to be compen-
sated, most evident was an abnormally large betatron
coupling discovered during early LEP commissioning. It
manifested itself by coupling the first-turn trajectories,
tilting and blowing up the beam and confusing tune mea-
surements. All the necessary corrections were based on
the formalism described above and can be used to illus-
trate its application.

B. Compensation of the ring linear coupling

Among the expected sources of linear coupling in the
LEP, there are three that have been considered as impor-
tant and estimated in the design phase. Indeed, the ran-
dom tilts of all quadrupoles of rms value (6) and finite
amplitudes of the vertical orbit (rms {z)) in the sys-
tematic sextupoles required for chromaticity correction
generate coupling, estimated to be

|C~|=0.009 for (8)=0.24 mrad ,

(80)
|C~|=0.012 for (z)=1.0 mm

on the nominal optics (tunes separated by 8). The third
source was of course the experimental solenoids, of which
the strongest field integral corresponds to |C ~|=0.06.
This result justified the introduction of tilted quadrupoles
near each interaction point (total of 8 per point) to reduce
every solenoid contribution to below ~0.003.

There remain, however, sources due to field imperfec-
tions, initially considered as negligible, such as the field
asymmetries in the magnets, the earth field, the induced
current in a dissymmetric vacuum chamber, and the pres-
ence of magnetic material perturbing the field lines. One
of those had to be responsible for the observed |C ~| that
was an order of magnitude higher than expected
(|C~]=0.3) and corresponded to a systematic skewed
gradient of ~2 Gm™ ! in all arcs. Measurements ruled
out the earth field as being the main contributor since the
consequent skewed gradient estimated by including the
shielding effect of the dipole is only about 0.15 Gm™!.
The importance of asymmetries has not been precisely
quantified, but the presence of ferromagnetic nickel in the
contact layer between the aluminum chamber and the
lead shield was identified as the main source of the unex-
pected perturbations [15]. The remanent field of the
nickel can be strong and its component in the horizontal
faces of the chamber creates an undesirable skewed field
(Fig. 5).

In view of coupling compensation [16], it was first ap-
propriate to reoptimize the linear optics of the LEP in or-
der to modify the tune-integer separation (nominally
equal to 8), for the collider was difficult to control and the
source of imperfections had the periodicity 8 of the arcs.
With tune integers separated by 6 (Q, =71.4, Q,=77.3),
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FIG. 5. Calculated field map in the LEP dipoles, due to nick-
el remanent field. The vacuum chamber is shown between the
magnet poles (transversal section) and the nickel layer is on the
surface of the chamber. The scale is given by the gap height
separating the poles which is equal to 100 mm.

the driving term (15) of the difference resonance was re-
duced by approximately 5, but was still large

|C~]=0.058 for |Q,—Q,|=6. (81)

The next step consisted of trying to compensate linear
coupling by using the tilted quadrupoles already installed
near each of the four experimental areas. For the neces-
sary solenoid compensation, there are four pairs (or fami-
lies) around every even crossing point able to entirely
decouple betatron motions outside the experimental sec-

Position L2 R2 14 R4 L6 R6
QT1 polarity — - + + — -
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tions and at the interaction position. The corresponding
pairs of magnets are termed QT1-QT4, the elements of a
pair being symmetrically located with respect to the
solenoid center. Antisymmetrically powered, these ele-
ments generate an imaginary component C ~, while they
create a real component when powered with the same
sign. The two pairs QT2 and QT3 are antisymmetrically
powered to mainly compensate for the solenoids (imagi-
nary C~; see Sec. V C), while the magnets of QT1 and
QT4 are independent in order to give means of compen-
sating ring imperfections (mainly real C ). The margin
in their strengths, foreseen for running at ~100 GeV,
made it possible to use them for correcting the strong sys-
tematic coupling due to the vacuum chamber at injection.

Since the working point of the LEP is close to a
difference resonance, the efforts for correcting the ring
imperfections were focused on a reduction of C~. Mea-
surements basically concerned with the normal mode fre-
quencies (Sec. IIIB) and predictions of corrections were
based on estimates of C ™~ using Egs. (15) and (16), as well
as on numerical simulations.

The first successful compensation was obtained using
the optics with |Q, —Q,|=6 and the QT1 tilted quadru-
poles [17]. It was based on the observation supported by
numerical simulations that a second harmonic of a
skewed-gradient correction had strong effects on coupling
with this optics, for the source of the imperfections was
mainly harmonic 8. Subsidiarily, two arcs enclosing one
crossing point and having approximately symmetrical er-
rors generate a real component C ™ at this point, as can
be seen from formula (15) using the appropriate phases.
Both arguments incited us to excite the QT1 according to
the following pattern (e.g., L2 stands for left of point 2
and R2 for right of point 2),

L8 RS
+

—+

QT1 absolute normalized strength 0.006 m ™2 at 20 GeV.

This first “historical” compensation [16,17] succeeded
in decreasing |C ~| by more than an order of magnitude,
down to 0.001, as shown in Fig. 6 (with experimental
solenoids switched off). The corresponding change in the
beam aspect ratio, at positions with and without horizon-
tal dispersion (top and bottom), can be seen in Fig. 7.
This correction made the control of the machine much
easier and physics runs successful. Later, compensation
was achieved by using the QT4 quadrupoles, which are
almost equivalent but the tuning of which do not depend
on the betatron amplitudes at the interaction points. The
compensation was also distributed in the arcs by adding
pairs of small tilted quadrupoles near the center of each
arc. All these schemes were based on the treatment re-
called in Sec. II [2].

Given the limited resolution of the information con-
veyed by the luminescent screens (Fig. 7), the careful

comparison of the two pictures at D, =0 and at finite D,
(assumed to be close to the nominal value) allowed a
rough estimate of the actual emittance ratio. Hence what
seems to be full coupling on the bottom left picture be-
fore compensation corresponds to an emittance ratio g of
~0.3. Similarly, the bottom right picture taken after
compensation conceals a ratio about two times smaller (in
agreement with the observed vertical dispersion of about
40 cm, as pointed out in Sec. V A). The ring compensa-
tion done as explained made possible further optical ad-
justments and correction of solenoid effects (Sec. V C),
leading to a rise of luminosity (an order of magnitude,
say). After reducing D, by careful orbit corrections to
about 20-25 cm, the emittance ratio approached the
nominal 4% (Sec. V A) and the expected luminosity was
within reach. Even though the betatron coupling due to
the magnetization of the nickel layer of the LEP dipole
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FIG. 6. Tune separation on the difference resonance, before
and after the first compensation with the tilted quadrupoles
QT1 of LEP (dimensionless quantities).

vacuum chamber has been much weakened as described,
the source itself has been suppressed more recently [15]
by demagnetizing the nickel layer of the chamber, reduc-
ing the bare coupling by more than a factor 5.

C. Compensation of solenoid linear coupling

Let us here differentiate between the coefficients arising
from tilted quadrupoles and from solenoids by C§tQ and
CZL,. Now the requirement of full compensation of
solenoidal effects with tilted quadrupoles may be formu-
lated easily

Ci +2CSQ =0. (82)

The summation has to be made over all tilted quadru-
poles that are excited to compensate the solenoids.

No Coupling Compensation  First Compensation. with QT1

x
a
a0
=
=
&z
=
3
=

FIG. 7. Beam aspect from the light monitors placed at finite
or vanishing dispersion, before and after the first coupling com-
pensation in LEP (transversal beam section). The squares on
the pictures have 5-mm sides.
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Hence there are four linear equations since C* and C~
are complex and, in a thin-lens approximation for the tilt-
ed quadrupoles only, the system (82) may be written as
follows [14,18] by virtue of (16) and Eq. (15¢) (with S =0):

J

Xcos Hx —'.u’z_%A:F +Csoll ’
. ’ (83)
J
. N
Xsin |, __F'z_—RTA:F +Cs012
J

where s is the quadrupole position and ! the quadrupole
length. K is defined by (1). Equations (83) correspond to
the real and the imaginary components of C T (indices 1
and 2, respectively) and are valid for either the difference
or the sum resonance. In the case of a solenoid with a
pure longitudinal field and centered at the minimum of
the betatron functions, the coupling coefficients can be
derived analytically from Egs. (15) (with K =0 and S50).
The variations of the “Twiss functions” a,, B, and u, in
a drift space are known to be

s s

a,=—-—, u, =arctan— , (84)
B* g B B}
where the asterisk denotes the parameter values at the
minimum of the betatron amplitude, chosen as the origin
of s. Inserting these expressions in the integral (15) gives
the simple solution [18]

B

Bt 172

B B2
where L is the length of the solenoid and S is defined by
(2). Both vectors are purely imaginary in the chosen
coordinate system. Their cancellation then imposes the
use of pairs of skewed quadrupoles symmetrically placed
with respect to the interaction point and having opposite
currents, because Cgg (left) is the complex conjugate of
Cgp (right). The presence of a real component due to
ring imperfections or overlap of one solenoidal field with
the next focusing quadrupoles (for example, the L3 exper-
iment in the LEP) requires, however, the presence of two
pairs of symmetrical quadrupoles with independent
power supplies to allow currents of the same or opposite
sign. All these considerations, the four conditions (83)
linked to the expressions (85) and the particular values of
the phases p, and functions B,, induced us to choose the
scheme shown in Fig. 8 for half an insertion [18]. It can
be used to compensate either the solenoids or the ring, as
explained in Sec. V A.

Let us underline here that this scheme makes it possi-
ble to decouple the motions at the solenoid centers, in or-
der to avoid any distortion of the four-dimensional beam
ellipsoid, which could reduce performance and luminosi-
ty. Moreover, the simultaneous compensation of C* and
C ™ outside the insertion of Fig. 8 and at the interaction

B (s)_By

*F — __» _L
Csol =1

’ (85)
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FIG. 8. Half LEP insertion with the experimental solenoid, 0.33
the tilted quadrupoles (QT) for compensation, the focusing D OPAL L3
quadrupoles (QS), and the vertical electrostatic separators (ZL).
0.37 4 comp. S
point prevents the existence of tilted normal modes and . . C ., e
B, beating in these positions and in the arcs [18]. 0.35 e .
Neglecting C* would indeed let a perturbation develop T < Tt . ° .
according to Eqgs. (28), and it can be interpreted as a :
modulation of the B, function, considering the form of 0.33 | ALEPH DELPUI
the complete solution that is similar to (31). This modu- A=0 A=0
lation is the more important the stronger is the tilt of the t //- +

normal modes, i.e., the modifications (29) or (30) of the
wave numbers. The effect is therefore a function of the
ratio |C | /A" and decreases with increasing At Tt is,
however, never completely negligible even when the
working point is roughly centered between two sum reso-
nance lines.

Only the compensation of both C* and C ™ avoid this
imperfection and completely decoupled the transfer ma-
trix across an experimental insertion. This fact was nu-
merically tested [18] for one particular LEP solenoid, us-
ing the programs TRANSPORT and PETROS. TRANSPORT
simulates the propagation of the beam ellipsoid
throughout an insertion and PETROS simulates the beam
dynamics of the whole machine with a compensated
solenoid. TRANSPORT confirmed that the beam sizes at
the crossing were not perturbed by more than 0.5% after
compensation and PETROS showed that the tilt of normal
modes was below 0.005° at the crossing and 0.04° in the
arcs.

The four solenoids to be compensated in the LEP are

' 7/

Distance from resonance

FIG. 9. Residual tune separations measured after initial com-
pensation of each experimental magnet in LEP. Quantities are
dimensionless.

those of the experiments L3, ALEPH, OPAL, and
DELPHI, with difference coupling ranging from 0.015 to
0.06. Compensation with the scheme described was pre-
calculated according to the present theory and initially
set up. These corrections were successful in general, but
some experimental adjustments were required sometimes
to get a residual |C| between 0.003 and 0.006 [14]. These
might, however, correspond to a general minimization of
the actual coupling around the ring rather than to a local
correction. The outcome was checked by measuring
|C ™| with the method of Sec. III B and individual results
obtained in the early commissioning phase are displayed
in Fig. 9.
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FIG. 2. Vertical (above) and horizontal (below) coherent os-
cillations measured in the Intersecting Storage Rings (CERN)
after a horizontal kick. The beating period is 0.5 ms in this
case.



No Coupling Compensation

First Compensation. with QT1

Finite D,

Vanishing D,

FIG. 7. Beam aspect from the light monitors placed at finite
or vanishing dispersion, before and after the first coupling com-
pensation in LEP (transversal beam section). The squares on
the pictures have 5-mm sides.



